由acosA+bcosB=2ccosC,a:c=sinA:sinC,b:c=sinB:sinC得sinAconA+sinBconB=2sinCconC 即sin(A+B)=sin(2C)故sinC=sin(2C)
所以C+2C=180°即C=60°
cosC=(a^2+b^2-c^2)/(2ab)=1/2
又因为a=5,b=8所以解得c=7
a4:a1=q^3=1/8
解得q=1/2
a(n)=(1/2)^n
(2)由上可得b(n)=2^n-n
所以S(n)=2^1+2^2+2^3+···+2^n-(1+2+3+···+n)
=(2-2^n)/(1-2) -n(n+1)/2
=2^n-1+n^2/2-n/2
=2^n+n^2/2-n/2-1