解题思路:由{an}是递增数列,得到an+1>an,再由“an=n2+λn恒成立”转化为“λ>-2n-1对于n∈N*恒成立”求解.
∵{an}是递增数列,
∴an+1>an,
∵an=n2+λn恒成立
即(n+1)2+λ(n+1)>n2+λn,
∴λ>-2n-1对于n∈N*恒成立.
而-2n-1在n=1时取得最大值-3,
∴λ>-3,
故选D.
点评:
本题考点: 数列的函数特性;函数恒成立问题.
考点点评: 本题主要考查由数列的单调性来构造不等式,解决恒成立问题.
解题思路:由{an}是递增数列,得到an+1>an,再由“an=n2+λn恒成立”转化为“λ>-2n-1对于n∈N*恒成立”求解.
∵{an}是递增数列,
∴an+1>an,
∵an=n2+λn恒成立
即(n+1)2+λ(n+1)>n2+λn,
∴λ>-2n-1对于n∈N*恒成立.
而-2n-1在n=1时取得最大值-3,
∴λ>-3,
故选D.
点评:
本题考点: 数列的函数特性;函数恒成立问题.
考点点评: 本题主要考查由数列的单调性来构造不等式,解决恒成立问题.