∫[0,π/2](sinx^10-cosx^10)dx/(1+sinx+cosx)
=∫[0,π/4](sinx^10-cosx^10)dx/(1+sinx+cosx)+∫[π/4,π/2](sinx^10-cosx^10)dx/(1+sinx+cosx)
u=π/2-x
=∫[0,π/4](sinx^10-cosx^10)dx/(1+sinx+cosx)+ ∫[π/4,0] (cosu^10-sinu^10)d(-u)/(1+sinu+cosu)
=∫[0,π/4](sinx^10-cosx^10)dx/(1+sinx+cosx)+∫[π/4,0](sinx^10-cosx^10)dx/(1+sinx+cosx)
=∫[0,0](sinx^10-cosx^10)dx/(1+sinx+cosx)
=0