一元二次方程的四种解法例题和过程和方法

1个回答

  • 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法.

    [例题]

    1、直接开平方法:

    直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的

    方程,其解为x=m± .

    例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

    分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以

    此方程也可用直接开平方法解.

    (1)(3x+1)2=7×

    ∴(3x+1)2=5

    ∴3x+1=±(注意不要丢解)

    ∴x=

    ∴原方程的解为x1=,x2=

    (2) 9x2-24x+16=11

    ∴(3x-4)2=11

    ∴3x-4=±

    ∴x=

    ∴原方程的解为x1=,x2=

    2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

    先将常数c移到方程右边:ax2+bx=-c

    将二次项系数化为1:x2+x=-

    方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2

    方程左边成为一个完全平方式:(x+ )2=

    当b2-4ac≥0时,x+ =±

    ∴x=(这就是求根公式)

    例2.用配方法解方程 3x2-4x-2=0

    将常数项移到方程右边 3x2-4x=2

    将二次项系数化为1:x2-x=

    方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2

    配方:(x-)2=

    直接开平方得:x-=±

    ∴x=

    ∴原方程的解为x1=,x2= .

    3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项

    系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根.

    例3.用公式法解方程 2x2-8x=-5

    将方程化为一般形式:2x2-8x+5=0

    ∴a=2, b=-8, c=5

    b2-4ac=(-8)2-4×2×5=64-40=24>0

    ∴x= = =

    ∴原方程的解为x1=,x2= .

    4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让

    两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个

    根.这种解一元二次方程的方法叫做因式分解法.

    例4.用因式分解法解下列方程:

    (1) (x+3)(x-6)=-8 (2) 2x2+3x=0

    (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)

    (1)(x+3)(x-6)=-8 化简整理得

    x2-3x-10=0 (方程左边为二次三项式,右边为零)

    (x-5)(x+2)=0 (方程左边分解因式)

    ∴x-5=0或x+2=0 (转化成两个一元一次方程)

    ∴x1=5,x2=-2是原方程的解.

    (2)2x2+3x=0

    x(2x+3)=0 (用提公因式法将方程左边分解因式)

    ∴x=0或2x+3=0 (转化成两个一元一次方程)

    ∴x1=0,x2=-是原方程的解.

    注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.

    (3)6x2+5x-50=0

    (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

    ∴2x-5=0或3x+10=0

    ∴x1=, x2=- 是原方程的解.

    (4)x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)

    (x-2)(x-2 )=0

    ∴x1=2 ,x2=2是原方程的解.