(n+1){a(n+1)}²=-an*a(n+1)+nan²(n+1){a(n+1)}²+an*a(n+1)-nan²=0[a(n+1)+an]*[(n+1)a(n+1)-nan]=0因为 an>0(n+1)an+1=nanan/a(n+1)=(n+1)/n.a1/a2=2把所有的相乘得到a1/{a(n+1)=n+1a1=1a(n+1)=...
在数列{an}中,a1=1,an>0,(n+1)a(n+1)²=-an*a(n+1)+nan²,求{
1个回答
相关问题
-
在数列{an}zhong ,a1=1,an+1=2^nan,n∈N*,求通项an
-
(Ⅰ)在数列{an}中,a1=1,a(n+1)=6n-an,求an ;(Ⅱ)在数列{an}中,a1=1,
-
数列an满足a1=1/2,nan+1(下标)-(n+1)an=n^2+n,求数列an/n的前n项和
-
已知数列{an}满足:a1=1/3,且an=(nan-1)/(2an-1+n-1)(n≥2,n∈N*)求数列{an}的通
-
在数列{an}中,a1=2,a(n+1)=4an-3n+1,n为N* (1)设bn=nan-n^2,求数列{bn}的前n
-
数列an中,若a1=-1,a(n+1)*an=a(n+1)-an,求an
-
数列{an},a1=1,4a[n]*a[n+1]=(a[n]+a[n+1]-1)²,an>an-1,求an
-
数列{an}{bn}中,a 1=1,b1=2,且an+1+(−1)nan=bn,n∈N*,设数列{an}{bn
-
在数列{an}中,a1=2,nan+1=(n+1)an,则{an}通项公式an
-
1.数列(an)中,a1=1,a(n+1)=an+2n,求an