解题思路:(1)令t=1-x,则x=1-t,利用换元法,根据f(1-x)=x2-3x+3.可得函数f(x)的解析式;
(2)根据(1)中函数f(x)的解析式,求出函数g(x)的解析式,进而根据二次函数的图象和性质,进行分类讨论,可得答案.
(1)令t=1-x,则x=1-t∵f(1-x)=x2-3x+3.∴f(t)=(1-t)2-3(1-t)+3=t2+t+1.即f(x)=x2+x+1.(2)由(1)得g(x)=f(x)-(1+2m)x+1=x2-2mx+2=(x-m)2+2-m2,x∈[32,+∞)若m≥32,则当x=m时,g(x)取...
点评:
本题考点: 函数的最值及其几何意义.
考点点评: 本题考查的知识点是函数解析式的求法,函数的最值及其几何意义,熟练掌握二次函数的图象和性质是解答的关键.