分析:先把方程化为一般形式:(a+b)x^2-2cx+b-a=0,计算△=4c^2-4(a+b)(b-a)=4(c^2-b^2+a^2),由a,b,c为一直角三角形的三边,且∠B=90°,则有b^2=c^2+a^2,所以△=0,由此可以判断方程根的情况.
方程化为一般形式为:(a+b)x^2-2cx+b-a=0,
∴△=4c^2-4(a+b)(b-a)=4(c^2-b^2+a^2),
又∵b,c为一直角三角形的三边,且∠B=90°,
∴b^2=c^2+a^2,
∴△=0,
所以方程有两个相等的实数根.