(1)证明:分别延长AG,AH交BC于M,N,在△ABM中,由已知,BG平分∠ABM,BG⊥AM,所以△ABG≌△MBG(ASA).
从而,G是AM的中点.同理可证△ACH≌△NCH(ASA),
从而,H是AN的中点.所以GH是△AMN的中位线,从而,HG ∥ MN,即HG ∥ BC.
(2)由(1)知,△ABG≌△MBG及△ACH≌△NCH,
所以AB=BM=9厘米,AC=CN=14厘米.
又BC=18厘米,
所以BN=BC-CN=18-14=4(厘米),
MC=BC-BM=18-9=9(厘米).
从而MN=18-4-9=5(厘米),
∴GH=
1
2 MN=
5
2 cm.
1年前
8