首先说明B是对称矩阵:B'=(kE)'+(A'A)'=kE+A'A=B.
接下来要证B正定,只需要要证对于任意不为0的n维向量x,都有x'Bx>0.事实上,x'Bx=x'(kE+A'A)x=kx'x+x'A'Ax=kx'x+(Ax)'Ax,由于k>0,x不等于0,则kx'x>0,又由于(Ax)'Ax>=0,则x'Bx>0.
首先说明B是对称矩阵:B'=(kE)'+(A'A)'=kE+A'A=B.
接下来要证B正定,只需要要证对于任意不为0的n维向量x,都有x'Bx>0.事实上,x'Bx=x'(kE+A'A)x=kx'x+x'A'Ax=kx'x+(Ax)'Ax,由于k>0,x不等于0,则kx'x>0,又由于(Ax)'Ax>=0,则x'Bx>0.