求{1/(1+√2)+1/(√2+√3)+1/(√3+√4)+...+1/(√2008+√2009)
1个回答
分子分母同时×√2-1
×√2-√3
×√4-√3
.
×√2009-√2008
变成√2-1+√3-√2+...+√2009-√2008=√2009-1
相关问题
1/1*2+1/2*3+1/3*4+...+1/2007*2008+1/2008*2009
1/2*1+1/3*2+1/4*3.+1/2009*2008=
|1/2-1|+|1/3-1/2|+1/4-1/3|+...|1/2009-1/2008|+|1/2010-1/2009
1/2008X2009 X(1X2+2X3+3X4+.+2008X2009) 求步骤!
(1/2+1/3.+1/2009)*(1+1/2+1/3..+1/2008)-(1+1/2+1/3..+1/2009)*
1/1*2+1/2*3+1/3*4+.+1/2008*2009的简便运算
1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + ……+ 1/2008*2009
1-1/1*2-1/2*3-1/3*4-1/4*5……-1/2008*2009的值
1/(√2009+√2008)+1/(√2008+√2007)+.+1/(√3+√2)+1/(√2+1)
计算1+2+3+…+2008+2009+2008+…+3+2+1