f(x)=(x-x³)/(1+2x²+x^4)
=(1/2)·[2x/(1+x²)]·[(1-x²)/(1+x²)].
设x=tan(θ/2),则
f(x)=(1/2)sinθcosθ=(1/4)sin2θ.
∴f(x)|max=1/4,f(x)|min=-1/4.
∴f(x)|max·f(x)|min=-1/16.
f(x)=(x-x³)/(1+2x²+x^4)
=(1/2)·[2x/(1+x²)]·[(1-x²)/(1+x²)].
设x=tan(θ/2),则
f(x)=(1/2)sinθcosθ=(1/4)sin2θ.
∴f(x)|max=1/4,f(x)|min=-1/4.
∴f(x)|max·f(x)|min=-1/16.