(1)令x 1=x 2=0,依条件③可得f(0+0)≥2f(0),即f(0)≤0
又由条件(1)得f(0)≥0 故f(0)=0(4分)
(2)任取0≤x 1<x 2≤1可知x 2-x 1∈(0,1],则
f(x 2)=f[(x 2-x 1)+x 1]≥f(x 2-x 1)+f(x 1)≥f(x 1)
于是当0≤x≤1时,有f(x)≤f(1)=1因此当x=1时,f(x)取最大值1.(9分)
(3)证明:当x∈ (
1
2 ,1] 时,f(x)≤f(1)=1
当x ∈(
1
4 ,
1
2 ] 时,
1
2 <2x≤1,f(2x)≤1,f(2x)≥f(x)+f(x)=2f(x)
∴f(x)≤
1
2 f(2x)≤
1
2 <2x即f(x)<2x.(14分)