令F(x)=f(x)^2*g(x)
则F(-x)=f(-x)^2*g(-x)=[-f(x)]^2*[-g(x)]=-f(x)^2*g(x)=-F(x)
故f(x)^2*g(x)为奇函数
令G(x)=f(x)^2-g(x)^2
则G(-x)=f(-x)^2-g(-x)^2=[-f(x)]^2-[-g(x)]^2=f(x)^2-g(x)^2=G(x)
故G(x)为偶函数
令F(x)=f(x)^2*g(x)
则F(-x)=f(-x)^2*g(-x)=[-f(x)]^2*[-g(x)]=-f(x)^2*g(x)=-F(x)
故f(x)^2*g(x)为奇函数
令G(x)=f(x)^2-g(x)^2
则G(-x)=f(-x)^2-g(-x)^2=[-f(x)]^2-[-g(x)]^2=f(x)^2-g(x)^2=G(x)
故G(x)为偶函数