1、令x=y=0,因为f(x+y)=f(x)+f(y)
故:f(0+0)=f(0)+f(0)
故:f(0)=0
2、令x+y=0,故:y=-x
因为f(x+y)=f(x)+f(y
故:f(0)=f(x)+f(-x)
故:f(x)+f(-x)= f(0)=0
故:f(x)=-f(-x)
又f(0)=0,即过原点(0,0),定义域为R
故:f(x)为奇函数
3、令y>0,故:f(y)<0
故:x+y>x,f(x+y)-f(x)=f(y)<0
故:f(x)在R上单调递减
4、因为f(1)=-2,故:f(4)= f(2)+ f(2)= f(1)+f(1)+f(1)+ f(1)=-8
故:f(x²-2x)-f(x)≥-8= f(4)
故:f(x²-2x) ≥f(x)+ f(4)= f(x +4)
因为f(x)在R上单调递减
故:x²-2x ≤x +4
故:(x-4)(x+1) ≤0
故:-1≤x≤4