f(x)=2-sin(2x+π/6)-2sin^2x
=2-sin2xcos(π/6)-cos2xsin(π/6)-(1-cos2x)
=1-sin2xcos(π/6)+cos2xsin(π/6)
=1-sin(2x-π/6)
F(B/2)=1-sin(B-π/6)=1
B=π/6
b²=a²+c²-2accosB
1=a²+3-2a*√3*(√3/2)
a²-3a+2=0
(a-1)(a-2)=0
a=1或a=2
f(x)=2-sin(2x+π/6)-2sin^2x
=2-sin2xcos(π/6)-cos2xsin(π/6)-(1-cos2x)
=1-sin2xcos(π/6)+cos2xsin(π/6)
=1-sin(2x-π/6)
F(B/2)=1-sin(B-π/6)=1
B=π/6
b²=a²+c²-2accosB
1=a²+3-2a*√3*(√3/2)
a²-3a+2=0
(a-1)(a-2)=0
a=1或a=2