1.等价矩阵就是你理解的那样.
2.相似矩阵的定义是:存在可逆矩阵P,使得P(-1)AP=B,则称B是A的相似矩阵.
原因:A与B相似有一个必要条件就是A与B的特征值相同,即|B-aE|=|A-aE|
所以|B-aE|=|P(-1)||A-aE||P|
所以|B-aE|=|P(-1)AP-aP(-1)EP|
即|B-aE|=|P(-1)AP-aE|
所以B=P(-1)AP
3.合同矩阵定义:若存在可逆矩阵C,使得C(T)AC=B,即A与B合同.
对于合同矩阵要从二次型说起,二次型为:f=x(T)Ax
可通过x=Cy变换,即把x=Cy带入
于是f=(Cy)(T)A(Cy)=y(T)[C(T)AC]y
其中令C(T)AC=B,即A与B合同
至于几何关系我就不懂了