解题思路:分为两种情况:①当O在△ABC内部时,连接OB、OA,延长AO交BC于D,求出OD,即可求出答案;②当O在△ABC外部时,连接OB、OA,AO交BC于D,求出OD,即可求出答案.
分为两种情况:
①当O在△ABC内部时,如图,连接OB、OA,延长AO交BC于D,
∵⊙O是等腰三角形ABC的外接圆,BC=8,
∴AD⊥BC,BD=DC=[1/2]AB=4,
在Rt△OBD中,由勾股定理得:OD=
52−42=3,
∴BC边上的高AD=AO+OD=5+3=8;
②当O在△ABC外部时,如图,连接OB、OA,AO交BC于D,
此时AD=AO-OD=5-3=2;
故选C.
点评:
本题考点: 垂径定理;等腰三角形的性质;勾股定理.
考点点评: 本题考查了等腰三角形性质,三角形的外接圆,垂径定理,勾股定理的应用,关键是能进行分类讨论求出符合条件的所有情况.