设f′(cos x)=(sin x)的平方,且f(0)=0,求f(x)
2个回答
记t=cos x 则(sin x)^2=1-t^2
即f'(t)=1-t^2,f(t)=-1/3t^3+t+c,由f(0)=0,c=0
所以f(x)=-1/3x^3+x ,x∈[-1,1]
相关问题
若f'(cos²x)=1+2sin²x,且f(0)=1,求f(x)
设f可导,y=sin{f[sin(x)]}且f(0)=0,求y'(0)
f'(cos^2x)=sin^2x ,f(0)=0,求f(x)
设F(x)是f(x)的一个原函数,且F(0)=0,F(x)f(x)=cos2x,求F(x)和f(x)
设F(x)为f(x)的原函数,当x≥0时,有f(x)F(x)=(sin2x)^2,且F(0)=1,F(x)≥0,求f(x
设f(0)=0,且f ' (0)=1,则limx→0 f(x)/(sin5x)=
设f(x)=x^n•sin(1/x) (x≠0),且f(0)=0,则f(x)在x=0处( )
若f'(cos^2x)=sin^2x,且f(0)=-(1/2),求方程f(x)=0的根
设曲线f(x)在[0,1]上可导,且y=f(sin^2x)+f(cos^2x),求dy/dx
设f(sin x/2 )-1+cos x ,求f(x)、f(cos x/2 ).