2010-9-13 21:09 解析:两种情况,
当高AD在CB的延长线上时,
在Rt△ABD中,AB^2=AD^2+BD^2,
得BD^2=15^2-12^2=81,
∴BD=9,
在Rt△ACD中,AC^2=AD^2+CD^2,
得CD^2=20^2-12^2=16^2,
∴CD=16,
则BC=CD-BD=16-9=7,
实质此情形为钝角三角形.另种情形为锐角三角形.
2010-9-13 21:09 解析:两种情况,
当高AD在CB的延长线上时,
在Rt△ABD中,AB^2=AD^2+BD^2,
得BD^2=15^2-12^2=81,
∴BD=9,
在Rt△ACD中,AC^2=AD^2+CD^2,
得CD^2=20^2-12^2=16^2,
∴CD=16,
则BC=CD-BD=16-9=7,
实质此情形为钝角三角形.另种情形为锐角三角形.