线性代数求逆矩阵

1个回答

  • 解: (A,E) =

    1 2 3 4 1 0 0 0

    2 3 1 2 0 1 0 0

    1 1 1 -1 0 0 1 0

    1 0 -2 -6 0 0 0 1

    r1-r3,r2-2r3,r4-r3

    0 1 2 5 1 0 -1 0

    0 1 -1 4 0 1 -2 0

    1 1 1 -1 0 0 1 0

    0 -1 -3 -5 0 0 -1 1

    ri-r4,i=1,2,3

    0 0 -1 0 1 0 -2 1

    0 0 -4 -1 0 1 -3 1

    1 0 -2 -6 0 0 0 1

    0 -1 -3 -5 0 0 -1 1

    r1*(-1),r2+4r1,r3+2r1,r4+3r1

    0 0 1 0 -1 0 2 -1

    0 0 0 -1 -4 1 5 -3

    1 0 0 -6 -2 0 4 -1

    0 -1 0 -5 -3 0 5 -2

    r2*(-1),r3+6r2,r4+5r2

    0 0 1 0 -1 0 2 -1

    0 0 0 1 4 -1 -5 3

    1 0 0 0 22 -6 -26 17

    0 -1 0 0 17 -5 -20 13

    r4*(-1), 交换行得

    1 0 0 0 22 -6 -26 17

    0 1 0 0 -17 5 20 -13

    0 0 1 0 -1 0 2 -1

    0 0 0 1 4 -1 -5 3

    所以 A^-1 =

    22 -6 -26 17

    -17 5 20 -13

    -1 0 2 -1

    4 -1 -5 3