已知正四棱锥P-ABC,底面正三角形ABC,边长=a,
S△ABC=√3a^2/4=4√3,
∴a^2=16,
∴a=4,
作斜高PD,交AB于D,
S△PAB=PD*AB/2=PD*4/2=2PD=6,
∴PD=3(cm),
∵PD⊥AB,且D平分AB,
∴△PDA是RT△,
根据勾股定理,
PA^2=PD^2+(AB/2)^2=9+4=13,
∴PA=√13(cm).
∴正四棱锥侧棱长为√13cm.
已知正四棱锥P-ABC,底面正三角形ABC,边长=a,
S△ABC=√3a^2/4=4√3,
∴a^2=16,
∴a=4,
作斜高PD,交AB于D,
S△PAB=PD*AB/2=PD*4/2=2PD=6,
∴PD=3(cm),
∵PD⊥AB,且D平分AB,
∴△PDA是RT△,
根据勾股定理,
PA^2=PD^2+(AB/2)^2=9+4=13,
∴PA=√13(cm).
∴正四棱锥侧棱长为√13cm.