在V上有两个内积f,g,定义他们的和为内积h,即h(x,y)=f(x,y)+g(x,y),则h也是V上的内积
事实上,
1)交换律:h(y,x)=f(y,x)+g(y,x)=f(x,y)+g(x,y)=h(x,y)
2)加性:h(x,y+z)=f(x,y+z)+g(x,y+z)=f(x,y)+f(x,z)+g(x,y)+g(x,z)=[f(x,y)+g(x,y)]+[f(x,z)+g(x,z)]
=h(x,y)+h(x,z)
3)齐性:h(kx,y)=f(kx,y)+g(kx,y)=kf(x,y)+kg(x,y)=k[f(x,y)+g(x,y)]=kh(x,y)
4)正定性:h(x,x)=f(x,x)+g(x,x)>=0,且显然h(x,x)=0蕴含f(x,x)=g(x,x)=0,所以x=0
由此结论成立.