(1)见解析(2)见解析
(1)连结BD,因为AB为圆O的直径,所以BD⊥AC.又∠B=90°,所以CB切圆O于点B且ED切圆O于点D,因此EB=ED,所以∠EBD=∠EDB,∠CDE+∠EDB=90°=∠EBD+∠C,所以∠CDE=∠C,得ED=EC,因此EB=EC,即E是BC的中点.
(2)连结BF,显然BF是Rt△ABE斜边上的高,可得△ABE∽△AFB,于是有
,
即AB 2=AE·AF,同理可得AB 2=AD·AC,
所以AD·AC=AE·AF.
(1)见解析(2)见解析
(1)连结BD,因为AB为圆O的直径,所以BD⊥AC.又∠B=90°,所以CB切圆O于点B且ED切圆O于点D,因此EB=ED,所以∠EBD=∠EDB,∠CDE+∠EDB=90°=∠EBD+∠C,所以∠CDE=∠C,得ED=EC,因此EB=EC,即E是BC的中点.
(2)连结BF,显然BF是Rt△ABE斜边上的高,可得△ABE∽△AFB,于是有
,
即AB 2=AE·AF,同理可得AB 2=AD·AC,
所以AD·AC=AE·AF.