设直线为 y=k(x-p)
代入k^2(x-p)^2=2px
即k^2x^2-(2k^2p+2p)x+k^2p^2=0
韦达定理得x1+x2=(2k^2p+2p)/k^2,x1x2=p^2
y1y2=-2p^2
向量OA·向量OB=x1x2+y1y2=p^2-2p^2=-p^2.(为定值)
设直线为 y=k(x-p)
代入k^2(x-p)^2=2px
即k^2x^2-(2k^2p+2p)x+k^2p^2=0
韦达定理得x1+x2=(2k^2p+2p)/k^2,x1x2=p^2
y1y2=-2p^2
向量OA·向量OB=x1x2+y1y2=p^2-2p^2=-p^2.(为定值)