由lg8000=lg8+lg1000=3lg2+3=3(lg2+1)
lg2^√3=√3lg2
所以原式=lg5*lg8000+(lg2^√3)^2
=3lg5((lg2+1))+(√3lg2)^2
=3lg5*lg2+3lg5+3lg2*lg2
=3lg2(lg5+lg2)+3lg5
=3lg2+3lg5
=3
注:lg2+lg5=lg10=1
由lg8000=lg8+lg1000=3lg2+3=3(lg2+1)
lg2^√3=√3lg2
所以原式=lg5*lg8000+(lg2^√3)^2
=3lg5((lg2+1))+(√3lg2)^2
=3lg5*lg2+3lg5+3lg2*lg2
=3lg2(lg5+lg2)+3lg5
=3lg2+3lg5
=3
注:lg2+lg5=lg10=1