三角形中,已知sin(A+B)=3/5 sina(A-B)=1/5 tanA=2tanB AB=3,求AB上的高

1个回答

  • 答:AB边上的高=√{√[(15±3√21)/2]}

    解:

    sin(A+B)=3/5,sin(A-B)=1/5,AB=3

    sin(A+B)+sin(A-B)=2sinA*cosB=3/5+1/5=4/5

    sinA*cosB=2/5

    sinC=sin(A+B)=3/5

    过C点作CD⊥AB,交AB于D点,则CD为AB边上的高,

    sinA=CD/AC,cosB=BD/AB

    sinA*cosB=(CD/AC)*(BD/AB)=2/5

    CD*BD/(AC*AB)=2/5.(1)

    sin∠ACD=AD/AC,cos∠ACD=CD/AC

    sin∠BCD=BD/BC,cos∠BCD=CD/BC

    sinC=sin(∠ACD+∠BCD)

    =sin∠ACD*cos∠BCD+cos∠ACD*sin∠BCD

    =(AD/AC)*(CD/BC)+(CD/AC)*(BD/BC)

    =CD*((AD+BD)/(AC*BC)

    =CD*AB/(AC*BC)

    =3CD/(AC*BC)

    =3/5

    CD/(AC*BC)=1/5

    AC*BC=5CD.(2)

    (2)代入(1)得

    BD=2

    AD=3-2=1

    在RT△ACD和RT△BCD中,根据勾股定理,得

    CD^2+BD^2=BC^2,CD^2+AD^2=AC^2

    CD^2+9=BC^2.(3)

    CD^2+1=AC^2.(4)

    (3)*(4)得

    (CD^2+9)*(CD^2+1)=BC^2*AC^2=(AC*BC)^2=(5CD)^2

    CD^4-15CD^2+9=0

    △=15*15-4*9=189

    CD^2=√[(15±√189)/2]=√[(15±3√21)/2]

    ∵CD>0

    ∴CD=√{√[(15±3√21)/2]