积分(0,pie) xsinx/(1+(cosx)^2) dx

1个回答

  • let f(x) = xsinx/(1+(cosx)^2

    f(-x) = f(x)

    ie f(x) is even function

    ∫(0,π)xsinx/(1+(cosx)^2) dx = ∫(-π,0)xsinx/(1+(cosx)^2) dx

    I= ∫(0,π)xsinx/(1+(cosx)^2) dx (1)

    let y =(π-x)

    dy = dx

    x=0,y=π

    x=π ,y=0

    I= ∫(π,0)(π-y)(siny) /(1+(cosy)^2) (-dy)

    = -∫(0,π)(π-y)siny/(1+(cosy)^2)dy

    = -∫(0,π)(π-x)sinx/(1+(cosx)^2)dx

    I= -∫(0,π)πsinx/(1+(cosx)^2)dx + I

    => ∫(0,π)πsinx/(1+(cosx)^2)dx =0

    let y' =-(π-x)

    dy' = dx

    x=0,y'=-π

    x=π ,y' =0

    I= ∫(-π,0)-(π-y')(-siny') /(1+(cosy')^2) (dy')

    = ∫(-π,0)(π-y')siny/(1+(cosy')^2)dy'

    = ∫(-π,0)(π-x)sinx/(1+(cosx)^2)dx

    = ∫(-π,0)πsinx/(1+(cosx)^2)dx -I

    2I = ∫(-π,0)πsinx/(1+(cosx)^2)dx

    let g(x) = πsinx/(1+(cosx)^2)dx

    g(-x) = -g(x) ( g is odd)

    ∫(-π,0)πsinx/(1+(cosx)^2)dx = -∫(0,π)πsinx/(1+(cosx)^2)dx =0

    => I= ∫(0,π)xsinx/(1+(cosx)^2) dx =0