观察下列各式,1/6=1/2*3=1/2-1/3;1/12=1/3*4=1/3-1/4:1/20=1/4*5=1/4-1

1个回答

  • 公式:

    1/n(n+1) = 1/n - 1/(n+1),其中:n为正整数

    证明:

    1/n(n+1)

    =[(n+1) - n] / n(n+1)

    =(n+1) / n(n+1) - n / n(n+1)

    =1/n - 1/(n+1)

    (2)

    1/(x-2)(x-3) = [(x-2)-(x-3)] / (x-2)(x-3) = (x-2)/(x-2)(x-3) - (x-3)/(x-2)(x-3)

    =1(x-3) - 1/(x-2)

    -2/(x-1)(x-3) =-[(x-1)-(x-3)] / (x-1)(x-3) = (x-2) (x-2)(x-3) - (x-3) (x-1)(x-3)

    = -1/(x-3) + 1/(x-1)

    1/(x-1)(x-2) =[(x-1)-(x-2)]/(x-1)(x-2) = (x-1)/(x-1)(x-2) - (x-2)/(x-1)(x-2)

    =1/(x-2) - 1/(x-1)

    上述各式相加:

    左边=1/(x-3) - 1/(x-2) - 1/(x-3) + 1/(x-1) + 1/(x-2) - 1/(x-1)

    = 0