公式:
1/n(n+1) = 1/n - 1/(n+1),其中:n为正整数
证明:
1/n(n+1)
=[(n+1) - n] / n(n+1)
=(n+1) / n(n+1) - n / n(n+1)
=1/n - 1/(n+1)
(2)
1/(x-2)(x-3) = [(x-2)-(x-3)] / (x-2)(x-3) = (x-2)/(x-2)(x-3) - (x-3)/(x-2)(x-3)
=1(x-3) - 1/(x-2)
-2/(x-1)(x-3) =-[(x-1)-(x-3)] / (x-1)(x-3) = (x-2) (x-2)(x-3) - (x-3) (x-1)(x-3)
= -1/(x-3) + 1/(x-1)
1/(x-1)(x-2) =[(x-1)-(x-2)]/(x-1)(x-2) = (x-1)/(x-1)(x-2) - (x-2)/(x-1)(x-2)
=1/(x-2) - 1/(x-1)
上述各式相加:
左边=1/(x-3) - 1/(x-2) - 1/(x-3) + 1/(x-1) + 1/(x-2) - 1/(x-1)
= 0