解题思路:(1)根据SAS可得△ABC≌△DCE,根据全等三角形的对应角相等,再结合已知不难求得结论.
(2)根据SAS可得△ABD≌△DCE,根据全等三角形的对应角相等,再结合已知不难求得结论.
(1)∵AB⊥AD,ED⊥AD,
∴∠A=∠D=90°.
又∵AB=CD,AC=DE,
∴△ABC≌△DCE.
∴∠B=∠DCE.
∵∠B+∠ACB=90°,
∴∠ACB+∠DCE=90°.
∴∠BCE=90°,
即BC⊥CE;
(2)∵AB⊥AD,ED⊥AD,
∴∠A=∠CDE=90°.
又∵AB=CD,AD=DE,
∴△ABD≌△DCE.
∴∠B=∠DCE.
∵∠B+∠ADB=90°,
∴∠ADB+∠DCE=90°.
BD⊥CE.
点评:
本题考点: 直角三角形全等的判定;全等三角形的性质.
考点点评: 本题利用了全等三角形的判定和性质,直角三角形的性质,三角形的内角和定理等求解,移动题目这几年常常考,要注意掌握.