证明:
(1)作OM⊥AC于点M,ON⊥CD于点N
∵OC是∠ACD的平分线
∴ON=OM
∴AC=CD
(2)作CG⊥CD,交DB的延长线于点G
∵AB是直径
∴∠ACB=90°=∠DCG
∵∠A=∠D,CA=CD
∴△ABC≌△DGC
∴AB=DG,BC=BG
∵CF⊥BG
∴BG=2BF=2
∴DG=3+2=5
∴AB=5
∴圆O的半径为2.5
证明:
(1)作OM⊥AC于点M,ON⊥CD于点N
∵OC是∠ACD的平分线
∴ON=OM
∴AC=CD
(2)作CG⊥CD,交DB的延长线于点G
∵AB是直径
∴∠ACB=90°=∠DCG
∵∠A=∠D,CA=CD
∴△ABC≌△DGC
∴AB=DG,BC=BG
∵CF⊥BG
∴BG=2BF=2
∴DG=3+2=5
∴AB=5
∴圆O的半径为2.5