答:
(1)
∠C=60°
(2)
DE=√3
(3)
连接BD.
x
=AD/DC
=(BD/tan∠A)/(BD/tan∠C)
=tan∠C/tan∠A
tan∠C=√3,
tan∠A
=tan(π-∠C-∠ABC)
=tan(2π/3-∠ABC)
=(-√3-tan∠ABC)/[1+(-√3)×tan∠ABC)
=-(√3+y)/(1-√3y).
所以有
x=-√3(1-√3y)/(√3+y)
y=(√3+1)x/(3-x).(0
答:
(1)
∠C=60°
(2)
DE=√3
(3)
连接BD.
x
=AD/DC
=(BD/tan∠A)/(BD/tan∠C)
=tan∠C/tan∠A
tan∠C=√3,
tan∠A
=tan(π-∠C-∠ABC)
=tan(2π/3-∠ABC)
=(-√3-tan∠ABC)/[1+(-√3)×tan∠ABC)
=-(√3+y)/(1-√3y).
所以有
x=-√3(1-√3y)/(√3+y)
y=(√3+1)x/(3-x).(0