证明:连接PO、AO,设PO、AB交于D 因为PA、PB是切线 所以PO⊥AB,OA⊥PA,OB⊥PB,∠C=∠PBA 因为OA⊥PA,OB⊥PB 所以P、A、O、B四点共圆 因为PQ//BC 所以∠C=∠PQA,∠CHQ=∠PQO 所以∠PBA=∠PQA 所以P、A、Q、B四点共圆 所以P、A、Q、O、B五点共圆 所以∠PQO=∠PAO=90° 所以∠CHQ=90° 所以OH⊥BC 所以BH=CH
在圆O中,有一个内接△ABC,过点A和B作切线PA和PB相交于点P,过点P作PQ平行于BC交AC于Q,连接QO并延长交B
2个回答
相关问题
-
若△ABC内接于圆O,过AB中点P作PQ⊥AC于Q,PR⊥BC于R.过C作切线MN,作PS⊥MN于S,连QR交PS于E,
-
如图,BD是直径,过圆O上一点A作圆O切线交DB延长线于P,过点B作BC平行PA交圆O于C,连接AB、AC1.证AB=A
-
圆O是三角形ABC的外接圆,AB=AC,过点A作PA平行于BC,交BO延长线于点P,求证:AP为圆O的切线.
-
已知圆1和圆2相交于点P,Q 过点P的直线交两圆于点A,B 且PA=PB.过点P作AB的垂线交O1O2(就是两圆心连线)
-
过P点作PQ平行于AB交AC于O,作PM平行于AC交AB于N 画图
-
已知 和 相交于A、B两点,过A点作 切线交 于点E,连接EB并延长交 于点C,直线CA交 于点D,
-
在△ABC中,AB=AC,点O是△ABC的外心,连接AO并延长交BC于D,交△ABC的外接圆于E,过点B作⊙O的切线交A
-
在△ABC中,∠B=60°,圆O是△ABC的外接圆,过点A作圆O的切线,交CO的延长线于点P,CP交圆O于点D.
-
如图,⊙O和⊙O'相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:
-
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长交⊙O于点E.证明: