∫dx/(x*ln√x)
2个回答
∫ 1/(x*ln√x) dx
=∫ 1/(√x√x*ln√x) dx
=2∫ 1/(√xln√x) d(√x)
=2∫ 1/(ln√x) d(ln√x)
=2ln|ln√x|+C
相关问题
∫dy/ylny=∫dx/x ln|lny|=ln|x|+lnc ∫dx/x 解出不是ln|x|+c 为什么是 ln|x
∫x*ln(x-1)dx
f (x) = ∫[a sin(ln x) + b cos(ln x)]dx
∫ln(x/2)dx
∫ ln(x-1) / x^2 dx
∫dx/x(1+ln平方x)=?
求不定积分∫(ln²x) /x dx
∫1/x√(1-ln^x)dx
∫ln(1+X)/(2-X)²dx
∫(ln(x+a))/(x+b) dx=