解题思路:(1)先对函数进行求导,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减可确定函数的单调性.
(2)先将问题转化为求函数在x≥0时的最小值问题,再结合(1)中的单调性可确定f(x)在x=2a或x=0处取得最小值,求出最小值,即可得到a的范围.
(1)f'(x)=x2-2(1+a)x+4a=(x-2)(x-2a)
由a>1知,当x<2时,f'(x)>0,
故f(x)在区间(-∞,2)是增函数;
当2<x<2a时,f'(x)<0,
故f(x)在区间(2,2a)是减函数;
当x>2a时,f'(x)>0,
故f(x)在区间(2a,+∞)是增函数.
综上,当a>1时,f(x)在区间(-∞,2)和(2a,+∞)是增函数,
在区间(2,2a)是减函数.
(2)由(1)知,当x≥0时,f(x)在x=2a或x=0处取得最小值.
f(2a)=
1
3(2a)3−(1+a)(2a)2+4a•2a+24a=−
4
3a3+4a2+24a,f(0)=24a
由假设知
a>1
f(2a)>0
f(0)>0
即
a>1
−
4
3a(a+3)(a−6)>0
24a>0.解得1<a<6
故a的取值范围是(1,6)
点评:
本题考点: 利用导数研究函数的单调性;函数恒成立问题.
考点点评: 本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性.