f(x)=(1+sinx)(1+cosx)=1+(sinx+cosx)+sinxcosx
令t=sinx+cosx =√2sin(x+π/4)
则-√2≤t≤√2
f(x)=1+t+(t^2-1)/2 =1/2(t^2+2t)+1/2
=1/2(t+1)^2
最小值是0(此时t=-1),最大值是√2+3/2(此时t=√2)
f(x)=(1+sinx)(1+cosx)=1+(sinx+cosx)+sinxcosx
令t=sinx+cosx =√2sin(x+π/4)
则-√2≤t≤√2
f(x)=1+t+(t^2-1)/2 =1/2(t^2+2t)+1/2
=1/2(t+1)^2
最小值是0(此时t=-1),最大值是√2+3/2(此时t=√2)