1*100+2*200+3*300+4*400+……+k*k*100
=100(1²+2²+……+k²)
=100*k(k+1)(2k+1)/6
=50/3*k(k+1)(2k+1)
n100+(n+1)200+(n+2)300+(n+3)400+……+(n+k-1)k*100
=100[n*1+(n+1)*2+(n+2)*3+(n+3)*4+……+(n+k-1)*k*]
= 100[(n-1+1)*1+(n-1+2)*2+(n-1+3)*3+(n-1+4)*4+……+(n-1+k)*k*]
=100[(n-1)*1+1*1+(n-1)*2+2*2+(n-1)*3+3*3+……+(n-1)*k+k*k*]
=100[(n-1)*(1+2+3+……+k)+1*1+*+2*2+3*3+……+k*k*]
=100[(n-1)*k*(k+1)/2+k(k+1)(2k+1)/6]
=50(n-1)*k*(k+1)+50/3*k(k+1)(2k+1)
挺难的……希望LZ能看懂