这个关系很复杂
先说可导和可微
对于单元函数 可微和可导是相同的
但对于多元函数则不一样
多元函数中各个偏导函数连续才能推出可微
多元函数可微则可以推出各偏导存在、各个方向的方向导数存在
可导的话一定连续
但连续不一定可导~
证连续的一般方法是左极限=右极限
所以如果极限存在的话一定连续
极限存在、连续都不能推出可导
但反之能推出~~
证可导的方法除了定义还就是左导-右导
反证这反面的问题很复杂要不断整理才能明白 ~ ~
这个关系很复杂
先说可导和可微
对于单元函数 可微和可导是相同的
但对于多元函数则不一样
多元函数中各个偏导函数连续才能推出可微
多元函数可微则可以推出各偏导存在、各个方向的方向导数存在
可导的话一定连续
但连续不一定可导~
证连续的一般方法是左极限=右极限
所以如果极限存在的话一定连续
极限存在、连续都不能推出可导
但反之能推出~~
证可导的方法除了定义还就是左导-右导
反证这反面的问题很复杂要不断整理才能明白 ~ ~