已知四边形中,向量AB的模=向量AD的模,向量CB的模=向量CD的模,

1个回答

  • 这题确实不好作,题目也没告诉四边形是平面四边形:

    |AB|=|AD|,|CB|=|CD|

    即:△ADC≌△ABC,即:∠ADC=∠ABC

    即:AD·DC=AB·BC

    AC·DB=(AD+DC)·(AB-AD)=AB·AD+AB·DC-|AD|^2-AD·DC

    =AD·(AB-AD)+AB·DC-AB·BC

    =AD·(AB-AD)+AB·(DC-BC)

    =AD·DB+AB·(CB-CD)

    =AD·DB+AB·DB=(AD+AB)·DB

    取DB边中点E,则:AC·DB=2AE·DB

    △ABD是等腰三角形,故:AE⊥DB

    即:AE·DB=0,故:AC·DB=0

    即:AC⊥DB