(1)p=(2sinA,1),q=(2sinB,cosC),且p//q,
∴sinB/sinA=cosC,
∴sinAcosC=sinB=sin(A+C),
∴cosAsinC=0,
∴cosA=0,sinA=1.
(2)f(C)=-2cos2C/(1+tanC)+1
=-2cosC(cosC-sinC)+1
=2sinCcosC+1-2(cosC)^2
=sin2C-cos2C
=√2sin(2C-π/4),
C∈(0,π/2),
∴u=2C-π/4的值域是(-π/4,3π/4),
∴v=sinu的值域是(-√2/2,1],
∴f(C)=√2v的取值范围是(-1,√2].