证明:由和差化积公式可得:
(cosx1+cosx2)/2=2cos[(x1+x2)/2]*cos[(x1-x2)/2]/2
=cos[(x1+x2)/2]*cos[(x1-x2)/2]
因为x1,x2∈(-π/2,π/2),则x1+x2∈(-π,π)
所以(x1+x2)/2∈(-π/2,π/2)
则cos(x1+x2)/2>0
又x1-x2∈(-π,π)即(x1-x2)/2∈(-π/2,π/2)
则cos[(x1-x2)/2]cos[(x1+x2)/2]*cos[(x1-x2)/2]
即cos[(x1+x2)/2]>(cosx1+cosx2)/2