原式=(b²+c²-a²)²-4b²c²)
=(b²+2bc+c²-a²)(b²-2bc+c²-a²)
=[(b+c)²-a²][(b-c)²-a²]
=(b+c+a)(b+c-a)(b-c+a)(b-c-a)
三角形两边之和大于第三边
所以b+c-a>0
b-c+a>0
b-c-a0
所以相乘小于0
所以无实数解
原式=(b²+c²-a²)²-4b²c²)
=(b²+2bc+c²-a²)(b²-2bc+c²-a²)
=[(b+c)²-a²][(b-c)²-a²]
=(b+c+a)(b+c-a)(b-c+a)(b-c-a)
三角形两边之和大于第三边
所以b+c-a>0
b-c+a>0
b-c-a0
所以相乘小于0
所以无实数解