a1b1+a2b2+```````+anbn=(2n-1)*2^(n+1)+2
a1b1+a2b2+```````+an-1bn-1=(2n-3)*2^n+2
两式子相减得anbn=(2n-1)*2^(n+1)-(2n-3)*2^n
=4n*2^n-2*2^n-2n*2^n+3*2^n=(2n+1)*2^n又第一小问答案是2n+1即an=2n+1
则bn=2^n
计算过程不敢包,但方法一定对
a1b1+a2b2+```````+anbn=(2n-1)*2^(n+1)+2
a1b1+a2b2+```````+an-1bn-1=(2n-3)*2^n+2
两式子相减得anbn=(2n-1)*2^(n+1)-(2n-3)*2^n
=4n*2^n-2*2^n-2n*2^n+3*2^n=(2n+1)*2^n又第一小问答案是2n+1即an=2n+1
则bn=2^n
计算过程不敢包,但方法一定对