你的这两个问题本质是相同的,关键在于你混淆了可积和原函数是初等函数这两个概念.函数可积是关于定积分的概念,本质上就是求和,如果这个和存在就是可积的,它不仅和被积函数有关,还和积分区间有关.而你所谓的“有原函数”这个说法其实准确的说法是“原函数是初等函数”,这是关于不定积分的概念,它只和函数的表达式有关,任何连续函数都可以以变上限积分函数作为其原函数的,例如sinx/x的原函数是∫(sinx/x)dx(积分限a到x),只是这个原函数不是初等函数而已.函数可积和其原函数是初等函数这两个事情之间没有必然的联系,刚才的例子就是可积但原函数不是初等函数,而原函数是初等函数但不可积的例子就更多了,例如1/x有原函数lnx,但它在(0,1)上不可积.以你的第一个问题为例,“.导函数只有在第二类间断点时,才有原函数”,这是指导函数只有第二类间断点时原函数才是初等函数,"无穷多个间断点的函数不可积分",这句话本身就是错的,应该是有无穷型间断点的函数不可积分,而这也是说其黎曼和不存在,和原函数是否是初等函数无关,两者没有矛盾.
关于导函数 与可积分1.导函数只有在第二类间断点时,才有原函数.无穷多个间断点的函数不可积分.都是积分不是自相矛盾了吗.
1个回答
相关问题
-
导函数间断点问题有人说导函数没有第一类间断点,也就是说有些导函数可以有第二类间断点.可是在一点处可导的定义是,左导数等于
-
导函数存在第二类间断点为什么原函数依然可导?导函数存在第二类间断点那么fx左导数右导数至少一个不存在,因为fx可导的充要
-
积分原函数存在问题 f(x)有第一类间断点它到底是有原函数还是没有原函数?
-
为什么导函数的间断点只能为第二类间断点?
-
高等数学的关于导函数间断点的问题.某函数F(x)zai (a,b)上可导,若F‘(x)存在间断点,必为第二类间断点
-
在可去间断点处函数可导,如题 如题,在可去间断点处函数可导,
-
有关高数的问题可积函数的变上限积分是连续的;连续函数的变上限积分是可导的.那么请问,当可积函数(x)存在什么样的间断点时
-
为什么求积分时要求导函数的原函数
-
【常见问题】为什么“导函数不存在第一类间断点”
-
连续函数一定有原函数.含有第二类间断点的函数可能含有原函数,第一类没有.