f(x)=ax+1/x+2=[a(x+2)+1-2a]/x+2=a+(1-2a)/(x+2)
因为f(x)=a+(1-2a)/(x+2)在区间(-2,正无穷)上是增函数
所以1-2a1/2
因此,a的取值范围为(1/2,正无穷)
1.1)
f(x)=2cos²x-1+√3sin2x+α+1
=cos2x+√3sin2x+α+1
=2[sin(π/6+2x)]+ α+1
f(x)在范围[-π/6,π/6]内最小值a,最大值3+a
∴ 2a+3=3
a=0
(2)f(x)=2[sin(π/6+2x)]+1
=2sin2(π/12+x)+1
根据旧图减新图=向量(常数项移至左侧)
m=(π/12,-1)
2.(1)应该是求k的取值范围吧
f(x)=cos²kx-sin²kx+2√3sinkxcoskx
=cos2kx+√3sin2kx
=sin(2kx+π/6)
由原题得:
ω≥π
2π/2k≥π
k≤1
(2)此时k=1
f(A)=sin(2A+π/6)=1
A=π/6
由正弦定理得:
2R=a/sinA=2√3
sinB+sinC=3/2R=√3/2
B+C=5π/6
不妨设c>b
B=π/3,C=π/2
a=√3,b=3
S=1/2·ab
=3√3/2