S(n)=[(1+A(n))/2]^2
S(n-1)=(1+A(n-1)/2]^2
A(n)=S(n)-S(n-1)
=(2(A(n)-A(n-1))+(A(n))^2-(A(n-1))^2)/4
n>=2
(An+An-1)(An-An-1)=2(An+An-1)
An-A(n-1)=2
A1=S1=((1+A1)/2)^2
A1=1
An=2n-1
S(n)=[(1+A(n))/2]^2
S(n-1)=(1+A(n-1)/2]^2
A(n)=S(n)-S(n-1)
=(2(A(n)-A(n-1))+(A(n))^2-(A(n-1))^2)/4
n>=2
(An+An-1)(An-An-1)=2(An+An-1)
An-A(n-1)=2
A1=S1=((1+A1)/2)^2
A1=1
An=2n-1