设函数f(x),g(x)在点x=0的某个领域内连续,且limx->0 g(x)/x=-1,limx->0 f(x)/{g

1个回答

  • 证明:由(x→0)limg(x)/x=-1 (极限为-1,分母趋于0,则分子必趋于0)

    可知(x→0)limg(x)=0 即g(0)=0

    于是(x→0)lim[g(x)-g(0)]/(x-0)=-1

    则g(x)在该邻域内可导且g'(0)=-1

    (x→0)limf(x)/g²(x)=2

    因为(x→0)limg²(x)=0

    则(x→0)limf(x)=0

    f(0)=0

    对(x→0)limf(x)/g²(x)=2进行变形

    (x→0)limf(x)/g²(x)

    =(x→0)lim[f(x)/x][x²/g(x)]

    =(x→0)lim[f(x)/x²]•(x→0)limx²/g(x) (变成两个极限之积,并对右边的极限用洛必达法则)

    =(x→0)lim[f(x)/x²]•(x→0)limx/g(x)•(x→0)lim1/g'(x)

    =(x→0)lim[f(x)/x²]•(-1)•(-1)

    =2

    因此f(x)=2x²+o(x)

    于是可以得到(x→0)limf(x)/x=0

    即f'(0)=0

    即证