cos(α+β)cos(α-β)=1/3
(cosαcosβ-sinαsinβ)(cosαcosβ+sinαsinβ)=1/3
cos^2αcos^2β-sin^2αsin^2β=1/3
cos^2αcos^2β-(1-cos^2α)(1-cos^2β)=1/3
cos^2αcos^2β-(1-cos^2β-cos^2α+cos^2αcos^2β)=1/3
cos^2β+cos^2α=4/3
cos(α+β)cos(α-β)=1/3
(cosαcosβ-sinαsinβ)(cosαcosβ+sinαsinβ)=1/3
cos^2αcos^2β-sin^2αsin^2β=1/3
cos^2αcos^2β-(1-cos^2α)(1-cos^2β)=1/3
cos^2αcos^2β-(1-cos^2β-cos^2α+cos^2αcos^2β)=1/3
cos^2β+cos^2α=4/3