z²=x²-y²
则z³=z(x²-y²)
而y²=x²-z²
x³-y³-z³=a(x-y)(x-z)
x³-y³-z(x²-y²)=a(x-y)(x-z)
(x-y)(x²+xy+y²)-z(x-y)(x+y)=a(x-y)(x-z)
两边除以x-y
x²+xy+y²-xz-yz=a(x-z)
x²+xy+(x²-z²)-xz-yz=a(x-z)
(x²-xz)+(x²-z²)+xy-yz=a(x-z)
x(x-z)+(x+z)(x-z)+y(x-z)=a(x-z)
(x-z)(x+x-z+y)=a(x-z)
所以a=2x-z+y