y=sin^2wx+√3sinwxcoswx-1
=1/2(1-cos2wx)+√3/2sin2wx-1
=1/2cos2wx+√3/2sin2wx-1/2
=sin(2wx+π/6)-1/2
周期T=2π/(2w)=2π,w=1/2
原式为y=sin(x+π/6)-1/2
因为x∈[0,π]
y的取值范围为[-1,1/2]
(2)单减区间
所以2kπ+π/2≤x+π/6 ≤2kπ+3π/2
2kπ+π/3≤x ≤2kπ+4π/3
对称轴方程:x+π/6=kπ+π/2
x=kπ+π/3k是整数
y=sin^2wx+√3sinwxcoswx-1
=1/2(1-cos2wx)+√3/2sin2wx-1
=1/2cos2wx+√3/2sin2wx-1/2
=sin(2wx+π/6)-1/2
周期T=2π/(2w)=2π,w=1/2
原式为y=sin(x+π/6)-1/2
因为x∈[0,π]
y的取值范围为[-1,1/2]
(2)单减区间
所以2kπ+π/2≤x+π/6 ≤2kπ+3π/2
2kπ+π/3≤x ≤2kπ+4π/3
对称轴方程:x+π/6=kπ+π/2
x=kπ+π/3k是整数