已知:如图,在Rt△ABC中,∠C=90°,sinA= ,AB=10,点O在AB上,以O为圆心,OA长为半径的圆与AC,

1个回答

  • (1)BC= AB·sinA=10×

    =6,∴AC=

    =8;

    (2)OA=

    理由:连接OD,DE,

    如果BD与⊙O相切,则OD⊥BD,

    ∴∠ADO+∠BDC=90°,

    ∵OA=OD,

    ∴∠A=∠ADO,

    ∴∠A+∠BDC=90°,

    ∵∠C=90°,

    ∴∠BDC+∠DBC=90°,

    ∴∠A=∠DBC,

    ∵∠C=∠C,

    ∴△ABC∽△BDC,

    ,解得CD=

    ∴AD=8-

    =

    ∵AE是⊙O的直径,

    ∴∠ADE=90°=∠C,

    ∵∠A=∠A,

    ∴△ADE∽△ACB,

    ,解得AE=

    ∴OA=